JAVA PROGRAMMING(CS2205PC)

UNIT I : Object oriented thinking :- Need for OOP paradigm, A way of viewing world —
Agents, responsibility, messages, methods, classes and instances, class hierarchies (Inheritance),
method binding, overriding and exceptions, summary of OOP concepts.

Java Basics :- History of Java, Java buzzwords, data types, variables, constants, scope and life
time of variables, operators, expressions, control statements, type conversion and casting, simple
java programs, concepts of classes, objects, arrays, strings, constructors, methods, access control,
this keyword, garbage collection, overloading methods and constructors, parameter passing,
BufferedReader class, Scanner class, StringTokenizer class, inner class.

Need for OOP paradigm

* The object oriented paradigm is a methodology for producing reusable software components.

* The object-oriented paradigm is a programming methodology that promotes the efficient design
and development of software systems using reusable components that can be quickly and safely
assembled into larger systems.

* Object oriented programming has taken a completely different direction and will place an
emphasis on object s and information. With object oriented programming, a problem will be
broken down into a number of units .these are called objects .The foundation of OOP is the fact
that it will place an emphasis on objects and classes. There are number of advantages to be found
with using the OOP paradigm, and some of these are OOP paradigm.

* Object oriented programming is a concept that was created because of the need to overcome the
problems that were found with using structured programming techniques. While structured
programming uses an approach which is top down, OOP uses an approach which is bottom up.

* A paradigm is a way in which a computer language looks at the problem to be solved. We
divide computer languages into four paradigms: procedural, object-oriented, functional and
declarative

* A paradigm shift from a function-centric approach to an object-centric approach to software
development.

* A program in a procedural paradigm is an active agent that uses passive objects that we refer to
as data or data items.

* The basic unit of code is the class which is a template for creating run-time objects.

* Classes can be composed from other classes. For example, Clocks can be constructed as an
aggregate of Counters.

» The object-oriented paradigm deals with active objects instead of passive objects. We
encounter many active objects in our daily life: a vehicle, an automatic door, a dishwasher and so
on. The actions to be performed on these objects are included in the object: the objects need only
to receive the appropriate stimulus from outside to perform one of the actions.

Dept of CSE, NRCM 1 Dr.Venkateswarulu, Assoc Prof

JAVA PROGRAMMING(CS2205PC)

* A file in an object-oriented paradigm can be packed with all the procedures called methods in
the object-oriented paradigm—to be performed by the file: printing, copying, deleting and so on.
The program in this paradigm just sends the corresponding request to the object.

* Java provides automatic garbage collection, relieving the programmer of the need to ensure that
unreferenced memory is regularly deallocated.

Object Oriented Paradigm — Key Features
* Encapsulation

* Abstraction

* Inheritance

* Polymorphism

A Way of viewing World-

Agents

» A Java agent is a regular Java class which follows a set of strict conventions. The agent class
must implement a public static premain method similar in principle to the main application entry
point. After the Java Virtual Machine (JVM) has initialized, each premain method will be called
in the order the agents were specified, then the real application main method will be called.
There are agent development toolkits and agent programming languages.

* The Agent Identity class defines agent identity. An instance of this class uniquely identifies an
agent. Agents use this information to identify the agents with whom they are interested in
collaborating.

* The Agent Host class defines the agent host. An instance of this class keeps track of every
agent executing in the system. It works with other hosts in order to transfer agents.

* The Agent class defines the agent. An instance of this class exists for each agent executing on a
given agent host.

* OOP uses an approach of treating a real world agent as an object.

* Object-oriented programming organizes a program around its data (that is, objects) and a set of
well-defined interfaces to that data.

* An object-oriented program can be characterized as data controlling access to code by
switching the controlling entity to data.

Responsibility
= In object-oriented design, the chain-of-responsibility pattern is a design pattern consisting of a
source of command objects and a series of processing objects.

» Each processing object contains logicthat defines the types of command objects thatit canhandle;
the rest are passed to the next processing object in the chain. A mechanism also exists for adding
new processing objects to the end of this chain.

Dept of CSE, NRCM 2 Dr.Venkateswarulu, Assoc Prof

JAVA PROGRAMMING(CS2205PC)

* Primary motivation is the need for a platform-independent (that is, architecture- neutral)
language that could be used to create software to be embedded in various consumer electronic
devices, such as microwave ovens and remote controls.

* Objects with clear responsibilities.
* Each class should have a clear responsibility.

« If you can't state the purpose of a class in a single, clear sentence, then perhaps your class
structure needs some thought.

* In object-oriented programming, the single responsibility principle states that every class
should have a single responsibility, and that responsibility should be entirely encapsulated by the
class. All its services should be narrowly aligned with that responsibility.

Messages
* Message implements the Part interface. Message contains a set of attributes and a "content".

» Message objects are obtained either from a Folder or by constructing a new Message object of
the appropriate subclass. Messages that have been received are normally retrieved from a folder
named "INBOX".

* A Message object obtained from a folder is just a lightweight reference to the actual message.
The Message is 'lazily' filled up (on demand) when each item is requested from the message.

* Note that certain folder implementations may return Message objects that are pre-filled with
certain user-specified items. To send a message, an appropriate subclass of Message (e.g., Mime
Message) is instantiated, the attributes and content are filled in, and the message is sent using the
Transport. Send method.

* We all like to use programs that let us know what's going on. Programs that keep us informed
often do so by displaying status and error messages.

* These messages need to be translated so they can be understood by end users around the world.

* The Section discusses translatable text messages. Usually, you're done after you move a
message String into a Resource Bundle.

* If you've embedded variable data in a message, you'll have to take some extra steps to prepare
it for translation.

Methods
* The only required elements of a method declaration are the method's return type, name, a

pair of parentheses, (), and a body between braces, {}.

» Two of the components of a method declaration comprise the method signature - the method's
name and the parameter types.

* More generally, method declarations have six components, in order:

* Modifiers - such as public, private, and others you will learn about later.

The return type - the data type of the value returned by the method, but void method does not
return a value to calling method.

Dept of CSE, NRCM 3 Dr.Venkateswarulu, Assoc Prof

JAVA PROGRAMMING(CS2205PC)

* The method name - the rules for field names apply to method names as well, but the
convention is a little different.

* The parameter list in parenthesis - a comma-delimited list of input parameters, preceded by
their data types, enclosed by parentheses, (). If there are no parameters, you must use empty
parentheses(). Ex: int add(int a,int b) { } or int add() { }

* The method body, enclosed between braces - the method's code, including the declaration of
local variables, goes here. { //body of amethod }

Naming a Method

Although a method name can be any legal identifier, code conventions restrict method names.
By convention, method names should be a verb in lowercase or a multi-word name that begins
with a verb in lowercase, followed by adjectives, nouns, etc. In multiword names, the first letter
of each of the second and following words should be capitalized. Here are some examples:

run

runFast

getBackground

getFinalData

Typically, a method has a unique name within its class. However, a method might have the same
name as other methods due to method overloading.

Overloading Methods

* The Java programming language supports overloading methods, and Java can distinguish
between methods with different method signatures. This means that methods within a class can
have the same name if they have different parameter lists (there are some qualifications to this
that will be discussed in the lesson titled "Interfaces and Inheritance").

* In the Java programming language, you can use the same name for all the drawing methods but
pass a different argument list to each method. Thus, the data drawing class might declare four
methods named draw, each of which has a different parameter list.

* Overloaded methods are differentiated by the number and the type of the arguments passed into
the method.

* You cannot declare more than one method with the same name and the same number and type
of arguments, because the compiler cannot tell them apart.

* The compiler does not consider return type when differentiating methods, so you cannot
declare two methods with the same signature even if they have a different return type.

* Overloaded methods should be used sparingly, as they can make code much less readable.

Classes

* In object-oriented terms, we say that your bicycle is an instance of the class of objects known
as bicycles. A class is the blueprint from which individual objects are created.

» Java classes contain fields and methods. A field is like a C++ data member, and a method is
like a C++ member function. In Java, each class will be in its own .java file. Each field and
method has an access level:

Dept of CSE, NRCM 4 Dr.Venkateswarulu, Assoc Prof

JAVA PROGRAMMING(CS2205PC)

* private: accessible only in this class.
* (package): accessible only in this package.
* protected: accessible only in this package and in all subclasses of this class.

* public: accessible everywhere this class is available.

Each class has one of two possible access levels:

* (package): class objects can only be declared and manipulated by code in this package.
* Public: class objects can be declared and manipulated by code in any package.

* Object: Object-oriented programming involves inheritance. In Java, all classes (built-in or
user-defined) are (implicitly) subclasses of Object. Using an array of Object in the List class
allows any kind of Object (an instance of any class) to be stored in the list. However, primitive
types (int, char, etc) cannot be stored in the list.

* A method should be made static when it does not access any of the non-static fields of the
class, and does not call any non-static methods.

« Java class objects exhibit the properties and behaviors defined by its class. A class can contain
fields and methods to describe the behavior of an object. Current states of a class_s
corresponding object are stored in the object_s instance variables.

Creating a class:

A class is created in the following way
Class <class name>
{
Member variables;
Methods;

}

* An object is a software bundle of related state and behavior. Software objects are often used to
model the real-world objects that you find in everyday life. This lesson explains how state and
behavior are represented within an object, introduces the concept of data encapsulation, and
explains the benefits of designing your software in this manner.

Class Variables — Static Fields

We use class variables also know as Static fields when we want to share characteristics across all
objects within a class. When you declare a field to be static, only a single instance of the
associated variable is created common to all the objects of that class. Hence when one object
changes the value of a class variable, it affects all objects of the class. We can access a class
variable by using the name of the class, and not necessarily using a reference to an individual
object within the class. Static variables can be accessed even though no objects of that class
exist. It is declared using static keyword.

Class Methods — Static Methods
Class methods, similar to Class variables can be invoked without having an instance of the class.
Class methods are often used to provide global functions for Java programs.

Dept of CSE, NRCM 5 Dr.Venkateswarulu, Assoc Prof

JAVA PROGRAMMING(CS2205PC)

For example, methods in the java.lang.Math package are class methods. You cannot call
nonstatic methods from inside a static method. Bundling code into individual software objects
provides a number of benefits, including:

* Modularity: The source code for an object can be written and maintained independently of the
source code for other objects. Once created, an object can be easily passed around inside the
system.

 Information-hiding: By interacting only with an object's methods, the details of its internal
implementation remain hidden from the outside world.

* Code re-use: If an object already exists (perhaps written by another software developer), you
can use that object in your program. This allows specialists to implement/test/debug complex,
task-specific objects, which you can then trust to run in your own code.

* Pluggability and debugging ease: If a particular object turns out to be problematic, you can
simply remove it from your application and plug in a different object as its replacement. This is
analogous to fixing mechanical problems in the real world. If a bolt breaks, you replace it, not
the entire machine.

An instance or an object for a class is created in the following way
<class name> <object name>=new <constructor>();

Encapsulation:

* Encapsulation is the mechanism that binds together code and the data it manipulates, and
keeps both safe from outside interference and misuse.

* One way to think about encapsulation is as a protective wrapper that prevents the code and data
from being arbitrarily accessed by other code defined outside the wrapper.

* Access to the code and data inside the wrapper is tightly controlled through a well-defined
interface.

» To relate this to the real world, consider the automatic transmission on an automobile.

* It encapsulates hundreds of bits of information about your engine, such as how much we are
accelerating, the pitch of the surface we are on, and the position of the shift.

* The power of encapsulated code is that everyone knows how to access it and thus can use it
regardless of the implementation details—and without fear of unexpected side effects.

Polymorphism:

Polymorphism (from the Greek, meaning —many formsl) is a feature that allows one interface to
be used for a general class of actions (One in many forms).

* The specific action is determined by the exact nature of the situation. Consider a stack (which
is a last-in, first-out list). We might have a program that requires three types of stacks. One stack
is used for integer values, one for floating-point values, and one for characters. The algorithm
that implements each stack is the same, even though the data being stored differs.

* In Java we can specify a general set of stack routines that all share the same names.

Dept of CSE, NRCM 6 Dr.Venkateswarulu, Assoc Prof

JAVA PROGRAMMING(CS2205PC)

More generally, the concept of polymorphism is often expressed by the phrase - one interface,
multiple methods. This means that it is possible to design a generic interface to a group of related
activities.

* This helps reduce complexity by allowing the same interface to be used to specify a general
class of action.

* Polymorphism allows us to create clean, sensible, readable, and resilient code.

Inheritance or class Hierarchies:

* Object-oriented programming allows classes to inherit commonly used state and behavior from
other classes. Different kinds of objects often have a certain amount in common with each other.

* In the Java programming language, each class is allowed to have one direct superclass, and
each superclass has the potential for an unlimited number of subclasses.

* Mountain bikes, road bikes, and tandem bikes, for example, all share the characteristics of
bicycles (current speed, current pedal cadence, current gear). Yet each also defines additional
features that make them different: tandem bicycles have two seats and two sets of handlebars;
road bikes have drop handlebars; some mountain bikes have an additional chain ring, giving
them a lower gear ratio. In this example, Bicycle now becomes the super class of Mountain
Bike, Road Bike, and Tandem Bike.

* The syntax for creating a subclass is simple. At the beginning of your class declaration, use the
extends keyword, followed by the name of the class to inherit from:

class <sub class> extends <super class>

{
// new fields and methods defining a sub class would go here

}

The different types of inheritance are:

1. Single level Inheritance.
2. Multilevel Inheritance.
3. Hierarchical inheritance.
4. Multiple inheritance.

5. Hybrid inheritance.

Multiple, hybrid inheritance is not used in the way as other inheritances but it needs a special
concept called interfaces.

Method Binding:
* Binding denotes association of a name with a class.

« Static binding is a binding in which the class association is made during compile time.
This is also called as early binding.

* Dynamic binding is a binding in which the class association is not made until the object is
created at execution time. It is also called as late binding.

Dept of CSE, NRCM 7 Dr.Venkateswarulu, Assoc Prof

JAVA PROGRAMMING(CS2205PC)

Abstraction:

Abstraction in Java or Object oriented programming is a way to segregate/hiding
implementation from interface and one of the five fundamentals along with Encapsulation,
Inheritance, Polymorphism, Class and Object.

* An essential component of object oriented programming is Abstraction.
* Humans manage complexity through abstraction.

* For example people do not think a car as a set of tens and thousands of individual parts. They
think of it as a well defined object with its own unique behavior.

* This abstraction allows people to use a car ignoring all details of how the engine, transmission
and braking systems work.

* In computer programs the data from a traditional process oriented program can be transformed
by abstraction into its component objects.

* A sequence of process steps can become a collection of messages between these objects. Thus
each object describes its own behavior.

Overriding:
* In a class hierarchy when a sub class has the same name and type signature as a method in the
super class, then the method in the subclass is said to override the method in the super class.

* When an overridden method is called from within a sub class, it will always refer to the version
of that method defined by the sub class.

* The version of the method defined by the super class will be hidden.

Exceptions:
* An exception is an abnormal condition that arises in a code sequence at run time. In other
words an exception is a run time error.

* A java exception is an object that describes an exceptional condition that has occurred in a
piece of code. When an exceptional condition arises, an object representing that exception is
created and thrown in the method that caused the error.

Summary of OOP concepts

OOP) is a programming paradigm that represents concepts as '"objects' that have data fields
(attributes that describe the object) and associated procedures known as methods.

* Objects, which are usually instances of classes, are used to interact with one another to design
applications and computer programs.

* Object-oriented programming is an approach to designing modular, reusable software systems.

* The goals of object-oriented programming are:
v" Increased understanding
v Ease of maintenance
v Ease of evolution.
v Object orientation eases maintenance by the use of encapsulation and information hiding.

Dept of CSE, NRCM 8 Dr.Venkateswarulu, Assoc Prof

JAVA PROGRAMMING(CS2205PC)

Object-Oriented Programming — Summary of Key Terms

Definitions of some of the key concepts in Object Oriented Programming (OOP)

Term

Definition

Abstract Data Type

A user-defined data type, including both attributes (its state) and
methods (its behavior).

Aggregation

Objects that are made up of other objects are known as
aggregations. The relationship is generally of one of two types:
» Composition — the object is composed of other objects. This
form of aggregation is a form of code reuse. E.g. A Car is
composed of Wheels, a Chassis and an Engine

* Collection — the object contains other objects. E.g. a List
contains several Items; A Set several Members.

Attribute

A characteristic of an object. Collectively the attributes of an
object describe its state. E.g. a Car may have attributes of
Speed, Direction, Registration Number and Driver.

Class

The definition of objects of the same abstract data type. In Java
class is the keyword used to define new types.

Encapsulation

The combining together of attributes (data) and methods
(behavior/processes) into a single abstract data type with a
public interface and a private implementation. This allows the
implementation to be altered without affecting the interface.

Inheritance

Acquiring the properties from base class to derived class. The
first class is often referred to the base or parent class. The
child is often referred to as a derived or sub-class. Inheritance
is one form of object-oriented code reuse.

E.g. Both Motorbikes and Cars are kinds of Motor Vehicles and
therefore share some common attributes and behaviour but may
add their own that are unique to that particular type.

Interface

The behaviour that a class exposes to the outside world; its
public face. Also called its contract_. In Java interface is also a
keyword similar to class.

However a Java interface contains no implementation: simply
describes the behavior of an Object.

Member Variable

A characteristic of an object or See attribute

Method

The implementation of some behaviour of an object.

Message

The invoking of a method of an object. In OOPs objects send
each other messages to achieve the desired behaviour.

Object

An instance of a class. Objects have state, identity and
behaviour.

Overloading

Allowing the same method name to be used for more than one
implementation. The different versions of the method vary
according to their parameter lists. If this can be determined at
compile time then static binding is used, otherwise dynamic
binding is used to select the correct method as runtime.

Dept of CSE, NRCM

9 Dr.Venkateswarulu, Assoc Prof

JAVA PROGRAMMING(CS2205PC)

Polymorphism Generally, the ability of different classes of object to respond to
the same message in different, class-specific ways. Polymorphic
methods are used which have one name but different
implementations for different classes.

E.g. Both the Plane and Car types might be able to respond to a
turnLeft message. While the behaviour is the same, the means
of achieving it are specific to each type.

Primitive Type The basic types which are provided with a given object oriented
programming language. E.g. int, float, double, char, Boolean

Static(Early) Binding The identification at compile time of which version of a
polymorphic method is being called. In order to do this the
compiler must identify the class of an object.

Dynamic (Late) Binding The identification at run time. When the class of an object
cannot be identified at compile time, so dynamic binding must
be used.

Advantage of OOPs over Procedure-oriented programming language

» OOPs makes development and maintenance easier where as in Procedure-oriented
programming language it is not easy to manage if code grows as project size grows.

» OOP provides data hiding whereas in Procedure-oriented programming language a global
data can be accessed from anywhere.

» OOP provides ability to simulate real-world event much more effectively. We can provide
the solution of real word problem if we are using the Object-Oriented Programming language.

Procedure Oriented Programming Object Oriented Programming
In POP, program is divided into small parts In OOP, program 1is divided into parts
called functions called objects

Importance is not given to databut to | Importance is given to the data rather than
functions as well as sequence of actions to be | procedures or functions because it works as

done. areal world
POP follows Top Down approach. OOP follows Bottom Up approach.
POP does not have any access specifier. OOP has access specifiers Public, Private,

Protected, etc.

In POP, Data can move freely from function In OOP, objects can move and communicate

to function in the system. with each other through member functions.

To add new data and function in POP is not so | OOP provides an easy way to add new data and

easy (Project grows) function.

POP does not have any proper way for hiding | OOP provides Data Hiding so provides more

data so it is less secure security

In POP, Overloading is not possible. Overloading is possible in the form of Function
Overloading and Operator Overloading.

Most function uses Global data for sharing Data cannot move easily from function to

that can be accessed freely from function to function, it can be kept public or private so we

function in the system. can control the access of data.

Example of POP are: C, VB, Pascal, etc. Example OOP: C++, JAVA, VB.NET, C#.NET.

Dept of CSE, NRCM 10 Dr.Venkateswarulu, Assoc Prof

JAVA PROGRAMMING(CS2205PC)

Java Basics:
History of JAVA

Java is a high level programming Language. It was introduced by -SUN Microsystems! in June
1995. It was developed by a team under James Gosling. Its original name was -OAKI and later
renamed to Java. Java has become the standard for Internet applications.

Since the Internet consists of different types of computers and operating systems. A common
language needed to enable computers. To run programs that run on multiple plot forms.

Java is Object-Oriented language built on C and C++. It derives its syntax from C and its
Object-Oriented features are influenced by C++.

Java can be used to create two types of programs
» Applications
> Applets.

An application is a prg.that runs on the user‘s computers under the operating system.

An Applet is a small window based prg.that runs on HTML page using a java enabled web
browser like internet Explorer, Netscape Navigator or an Applet Viewer.

The Java Programming Environment

Applets are java programs. That run as part of a web page and they depend on a web browser in
order to run. Applications are programs that are stored on the user‘s system and they do not need
a web browser in order to run.

The Java programming environment includes a number of development tools to develop applet
and application. The development tools are part of the system known as “Java Development
Kit” or “ JDK”. The JDK include the following.

1. Packages that contain classes.

2. Compiler ‘;—"__,)
3. Debugger _—
Java

JDK (java development tool Kit):
It is a software package from the sun micro systems where a new package JFC(java foundation
classes) was available as a separate package

JDK provides tools in the bin directory of JDK and they are as follows:
Javac: Javac is the java compiler that translates the source code to byte codes. That is, it
converts the source file. Namely the .java file to .class file.

Java: The java interpreter which runs applets and Applications by reading and interpreting the
byte code files. That is, it executes the .class file.

Javadoc: Javadoc is the utility used to produce documentation for the classes from the java files.
JDB: JDB is a debugging tool.
The way these tools are applied to build and run application programs is as follows:

The source code file is created using a text editor and saved with a .java (with Extension). The
source code is compiled using the java compiler javac. This translates source code to byte
codes. The compiled code is executed using the java interpreter java.

Dept of CSE, NRCM 11 Dr.Venkateswarulu, Assoc Prof

JAVA PROGRAMMING(CS2205PC)

JVM (JAVA VIRTUAL MACHINE)
Java is both compiled and an interpreted lang. First the java compiler translates source code
into the byte code instructions. In the next stage the java interpreter converts the byte code

instructions to machine code. This machine within the computer® is known as the “Java Virtual
Machine” or JVM.

The JVM can be thought as a mini operating system that forms a layer of abstraction where the
underlying hardware. The portability feature of the .class file helps in the execution of the prg
on any computer with the java virtual machine. This helps in implementing the “write once and
run anywhere” feature of java.

JAVA RUNTIME ENVIRONMENT
JRE consists of the java virtual machine. The java plot form core classes and supporting files. It
is the run time part of the java Development Kit. No compiler, no debugger, no tools.

Loding the .class files: Performed by the _ class loader* .
Verifying bytecode: Performed by the _ bytecode verifier® .
Executing the code : Performed by the runtime interpreter.

Class Files
Class loader

subsystem
Java Stack PC Native
Method Heap Registers Method
Area Stack
Runtime Data Areas

Execution Native Metheod Native Method
Engine Interface Library

JIT (JUST — IN — TIME)

Just — In — Time (JIT) compiler is a program that runs java bytecode into instructions that can be
sent directly to the processor. (Machine code).

Steps to execute a java prg:

? Open any editor such as notepad

? Type the source code

? Save it with .java extension (File Name and class name must be same)
? Compile it

? Run it

Dept of CSE, NRCM 12 Dr.Venkateswarulu, Assoc Prof

JAVA PROGRAMMING(CS2205PC)

Steps to compile a java prg:

? Open Dos prompt

? Set the path Ex: path=c:\jdk1.2.2\bin and press enter key
? Move to your working directory/folder

? Compile the prg Ex: javac filename.java

? Runthe prg Ex: java filename

IN THE JAVA PROGRAM:
public: It indicates that main() can be called outside the class.

static: It is an access specifier, which indicates that main() can be called directly without
creating an object to the class.

void: It indicates that the method main() doesn‘ t return a value.

main(): It is a method which is an entry point into the java prg. When you run a java prg.main()
is called first.

String args []: String is a class, which belongs to java.lang package. It can be used as a string
data type in java.

args[]: It is an array of string type. It is used to store command line args.
System: It is a class, which belongs to java.lang package.
out: It is an output stream object, which is a member of System class.

println(): It is a method supported by the output stream object —outl. It is used to display any kind
of output on the screen. It gives a new line after printing the output.

print(): It is similar to println(). But doesn‘ t give a new line after printing the output.

Java“s Byte code:

The key that allows java to solve the both security and portability problems is that the output of a
java compiler is not executable code rather it is byte code. Byte code is highly optimized set of
instructions designed to be executed by java runtime systems, which is called JVM.

Byte codes are instructions that are generated for a virtual machine. A virtual machine is a
program that processes these generalized instructions to machine specific code.

Differences of JAVA from C++

e No typedefs, defines or preprocessors

e No header files

e No structures and unions

e No enums (enum class is there)

e No functions — only methods in classes

e No multiple inhehitance trough class (achieve using interface)
e No operator overloading (except _+* for string concatenation)
e No automatic type conversions (except for primitive types)

e No pointers

Dept of CSE, NRCM 13 Dr.Venkateswarulu, Assoc Prof

JAVA PROGRAMMING(CS2205PC)

Structure of a Java Source File

|
/I AnExample java ‘_| Source file should have the same name as the class it declares

package ch.alari.javatutoring; --—|AnExampIe.java needs to reside in ch/alarifjavatutoring

import java.io.*; —-l—| Imported classes need to be in the classpath at compile-time

class AnExample

¢ private int x; --—| Variable declarations |
public AnExample(int x) ~-—| Constructor |
{ this.x = x;

}

/* Interface of the class
to other classes.

public int getX() --—i Method declarations

return x;

public void setX(int x)
{

this.x = x;

Java Buzzwords or Features of Java:

No discussion of the genesis of Java is complete without a look at the Java buzzwords. Although
the fundamental forces that necessitated the invention of Java are portability and security, other
factors also played an important role in mol ding the final form of the language. The key
considerations were summed up by the Java team in the following list of buzzwords:

1. Simple: Java follows the syntax of C and Object Oriented principles of C++. It eliminates the
complexities of C and C++. Therefore, Java has been made simple.

2. Object-Oriented: It is an Object-Oriented programming language. The object model in Java
is simple. Although influenced by its procedures. It was designed to be source code compatible
with any other language.

3. Plot form Independent: Plot form is the combination of operating system and
microprocessor. Java programming works in all plot forms. It is achieved by JVM (Java Virtual
Machine). The philosophy of java is —Write Once, Run anywherel (WORA).

4. Robust: Java is strictly a typed language. It has both a compiler and an interpreter. Compiler
checks code at run time and garbage collection is taking care of by java automatically. Thus it is
a robust language.

5. Secure: java developers have taken all care to make it a secure programming language.
For Ex. Java Applets are restricted from Disk I/O of local machine.

6. Distributed: Java is designed for the distributed environment of the Internet. It handles
TCP/IP protocols. Java‘s remote method invocation (RMI) make distributed programming
Possible.

Dept of CSE, NRCM 14 Dr.Venkateswarulu, Assoc Prof

JAVA PROGRAMMING(CS2205PC)

7. Multithreaded: Java was designed to meet the real-world requirement. To achieve this, java
supports multithreaded programming. It is the ability to run any things simultaneously.

8. Dynamic: That is run time. This makes it possible to dynamically link code in a safe and
secure manner.

9. Architecture-Neutral

A central issue for the Java designers was that of code longevity and portability. One of the main
problems facing programmers is that no guarantee exists that if you write a program today, it will
run tomorrow—even on the same machine.

Operating system upgrades, processor upgrades, and changes in core system resources can all
combine to make a program malfunction. The Java Virtual Machine (JVM) in an attempt to alter
this situation. Their goal was —write once; run anywhere, anytime, forever.

10. Interpreted and High Performance

Java enables the creation of cross-platform programs by compiling into an intermediate
representation called Java byte code. This code can be interpreted on any system that provides a
Java Virtual Machine. It would be easy to translate directly into native machine code for very
high performance by using a just-in-time compiler.

Comments: There are 3 types of comments defined by java. Those are Single line comment,
multilane comment and the third type is called documentation comment. This type of comment is
used to produce an HTML file that documents your prg.

// this is single line comment.

/* this multiple

line comment*/

/** this documentation comment */

Key words:

Keywords are the words. Those have specifics meaning in the compiler. Those are called
keywords. There are 49 reserved keywords currently defined in the java language. These
keywords cannot be used as names for a variable, class or method. Those are,

abstract continue goto package synchronized
assert default if private this

boolean do implements protected throw

break double import public throws

byte else instanceof return transient

case extends nt short try

catch final interface static void

char finally long strictfp volatile

class float native super while

const for new switch

Java Is a Strongly Typed Language
It is important to state at the outset that Java is a strongly typed language. Indeed, part of Java‘s
safety and robustness comes from this fact. Let‘s see what this means.

Dept of CSE, NRCM 15 Dr.Venkateswarulu, Assoc Prof

JAVA PROGRAMMING(CS2205PC)

First, every variable has a type, every expression has a type, & every type is strictly defined.
Second, all assignments, whether explicit or via parameter passing in method calls, are checked
for type compatibility. There are no automatic coercions or conversions of conflicting types as in
some languages.

The Java compiler checks all expressions and parameters to ensure that the types are compatible.
Any type mismatches are errors that must be corrected before the compiler will finish compiling
the class.

For example, in C/C++ you can assign a floating-point value to an integer as shown below
int n=12.345;

where in the above case the integer variable holds only the round part of the assigned fraction
value as n=12.

In Java, you cannot. Also, in C there is not necessarily strong type-checking between a
parameter and an argument. In Java, there is.

DATA TYPES:

The data, which gives to the computer in different types, are called Data Types or Storage
representation of a variable is called Data Type. Java defines 8 types of data: byte, short, int,
long, float, double, char and Boolean.

These can be put in Four types:

Integer: this group includes byte, short, int & long, which are whole valued signed numbers.
Floating-point numbers: float & double, which represents numbers with fractional precision.
Character: This represents symbols in a character set, like letters and numbers.

Boolean: This is a special type for representing true / false values.

Narrn e widel: (Byres) Rarncse
long 8 -9,223.372.036.854,775.808 to
+9.223.372.036.854.775,807
int a -2147483648 to +2147483647
short 2> -32.768 to +32.767
byte 1 “EZR e 127 ,
double 8 -3.a4%e3%% to 3 .g4%e>98
float 4 —1.7%e>® to 1.7*3%
char 2 O to 65.536
boolean bit O o 1.
Examples of double and char
class FindSqrt class CharDemo {
{ public static void main(String args[]) {
public static void main(String args[]) char chl, ch2;
{ chl = 88; // code for X
double d1=25,d2=34; ch2="Y"
System.out.println("Sqrt of d1 System.out.print("chl and ch2: ");
is:"+Math.sqrt(d1)); System.out.println(chl + " " + ch2);
System.out.println("Sqrt of d2 }
1s:"+Math.sqrt(d2)); }
} This program displays the following output:
} chlandch2: XY

Dept of CSE, NRCM 16 Dr.Venkateswarulu, Assoc Prof

JAVA PROGRAMMING(CS2205PC)

Examples of boolean

class BoolTest b = false;

{ if(b) {

public static void main(String args|[]) System.out.println("This is not executed."); }
{ System.out.println("10 > 9 is " + (10 > 9));

boolean b; }

b = false; }

System.out.println("b is " + b); Output:

b = true; b is false

System.out.println("b is " + b); b is true

if(b){ This is executed.

System.out.println("This is executed."); } 10 > 9 is true

Variables:

The variable is the basic unit of storage in a Java program. A variable is defined by the
combination of an identifier, a type, and an optional initializer. In addition, all variables have a
scope, which defines their visibility, and a lifetime. In Java, all variables must be declared before
they can be used. The basic form of a variable declaration is shown here:

type identifier [= value][, identifier [= value] ...];
Ex: int a, b, c¢; // declares three ints, a, b, and c.
intd =3, e, f=15; // declares three more ints
byte z = 22; // initializes z.
double pi = 3.14159; // declares an approximation of pi.
char x = 'x"; // the variable x has the value 'x'.

Constant identifiers:

Final keyword is used for constants. Constant identifiers consist of all capital letters. Internal
words are separated by an underscore (_).

Example: final double TAX_RATE = .05

The Scope and Lifetime of Variables:

All of the variables used till now have been declared at the start of the main() method. However,
Java allows variables to be declared within any block. A block is begun with an opening curly
brace and ended by a closing curly brace. A block defines a scope.

Most other computer languages define two general categories of scopes: global and local.
The scope defined by a method begins with its opening curly brace.

Objects declared in the outer scope will be visible to code within the inner scope. However, the
reverse is not true. Objects declared within the inner scope will not be visible outside it.

To understand the effect of nested scopes, consider the following program:

/I demonstrate block scope. if(x ==10)
class Scope { /] start new scope
{ int y = 20; // known only to this block
public static void main(String args[])
{ /I x and y both known here.
int x; // code within main System.out.print("x and y:" +x+ " " +y);
x =10; X=y*2;

Dept of CSE, NRCM 17 Dr.Venkateswarulu, Assoc Prof

JAVA PROGRAMMING(CS2205PC)

} }
y = 100; // Error! y not known here }

/I x is still known here. Output: x and y: 10 20 x is 40
System.out.print("\tx is " + X);
Types of variables: Java has 4 different kinds of variables
» local variables
» parameter variables
» class variables
» instance variables

Local variables:
A local variable will exists as long as the method in which they have been created is still running
As soon as the method terminates, all the local variables inside the method are destroyed.

Example: Scope of local variables:
class SomeClass class Scope2
{ {
public static void main(String args[]) public static void main(String args|]) {
{ void show(){
double x; double r;
............... Local variables r=3.14;
inty; }
} System.out.println(r); //Causes error is not
} } accessible outside the block
}

Non-overlapping (or disjoint) scopes:
It is possible to declare two variables with the same name in two different block scopes as shown
below
class Scope {
public static void main(String args[]) {

String r;
bl
}
}

Parameter variables:
A parameter variable is used to store information that is being passed from the location of the
method call into the method that is called.
class ToolBox
{ a=1.0 » b=2.0
public static double min(double a,double b) //Parameter variables

class MyProgram

{

Dept of CSE, NRCM 18 Dr.Venkateswarulu, Assoc Prof

JAVA PROGRAMMING(CS2205PC)

public static void main(String args[]) {
double r;
r=ToolBox.min(1.0,2.0);

bl
Life and scope of parameter variable:

The life time of a parameter variable is the entire body of the method
* A parameter variable behaves like a local variable that is defined at the Start of the method

Class variables:
Variables that are declared with the keyword static are called as class variables

Life of class variables: Class variables exists for the entire execution of the java program

Scope of class variables: The scope can be public
class StaticData

{

static int a=10,b=20; //Access these variables through class name, because of static.

}

class StaticDemo

{

public static void main(String args[])

{

int sum=StaticData.a+StaticData.b;
System.out.println("sum is"+sum);

bl

Instance variables:
Non static variables that are declared inside a class are called as instance variables.
class StaticData

{

int a=10,b=20; //instance variables of StaticData class
}

Life and scope of Instance variables:
It is limited only the object specified upon the class

Literals

Integer Literals
Integers are probably the most commonly used type in the typical program. Any hole number
value is an integer literal. Examples are 1, 2, 3, and 42.

Integer literals are classified into three types as
- Decimal literal —> Octal literal - Hexadecimal literal

Decimal literals
These are all decimal values, meaning they are describing a base 10 number. There are two other
bases which can be used in integer literals

Example: int n=10;

Dept of CSE, NRCM 19 Dr.Venkateswarulu, Assoc Prof

JAVA PROGRAMMING(CS2205PC)

Octal literals

Octal (base eight). Octal values are denoted in Java by a leading zero. Normal decimal numbers
cannot have a leading zero.

Thus, the seemingly valid value 09 will produce an error from the compiler, since 9 is outside of
octal“s 0 to 7 range.

Example: int n=07;

Hexadecimal literals:

Hexadecimal (base 16), A more common base for numbers used by programmers is
hexadecimal, which matches cleanly with modulo 8 word sizes, such as 8, 16, 32, and 64 bits.
You signify a hexadecimal constant with a leading zero-x, (0x or 0X). The range of a
hexadecimal digit is 0 to 15, so A through F (or a through f) are substituted for 10 through 15.

Example: int n=0xfff;

Example Program:

class Literal System.out.print("decimal literal is:"+dec);
{ System.out.println("octal literal is:"+oct);
public static void main(String args|[]) System.out.println("hexadecimal is:"+hex);
{ }
int dec=10,0ct=07,hex=0xff; }

Floating-Point Literals
Floating-point numbers represent decimal values with a fractional component.

Example: float f=12.346f (or) 12.346F;
double d=34.5678d (or) 34.5678D;

Boolean Literals
Boolean literals are simple. There are only two logical values that a boolean value can have, frue
and false. The true literal in Java does not equal 1, nor does the false literal equal 0.

Escape Sequence | Meaning

Character Literals \ T
Characters in Java are indices into the Unicode | jo+ e
. ! \t horizontal tab

character set. They are 16-bit values. A literal ;

h . d insid o \v vertical tab
character is represented inside a pair of single quotes. |\, Backspace
All of the visible ASCII characters can be directly |\, carriage return
entered inside the quotes, such as _a‘, _z‘, and _@". \f form feed

)) \a Bell
String Literals \ text literal
String literals in Java are enclosing a sequence of \" char literal
characters between a pair of double quotes. \" " String literal
\ddd Octal character(ddd)

Ex: -Hello Worldl -two'\nlines| \uxxxx Hexa character (Xxxx)

-\'This is in quotes\l

Dept of CSE, NRCM 20 Dr.Venkateswarulu, Assoc Prof

JAVA PROGRAMMING(CS2205PC)

Java Naming conventions

Java naming convention is a rule to follow as you decide what to name your identifiers such as
class, package, variable, constant, method etc. But, it is not forced to follow. So, it is known as
convention not rule.

All the classes, interfaces, packages, methods and fields of java programming language are given
according to java naming convention.

Advantage of naming conventions in java
By using standard Java naming conventions, you make your code easier to read for yourself and
for other programmers. Readability of Java program is very important.

Name Convention

class name Should start with uppercase letter and be a noun e.g. String, Color,
Button, System, Thread etc. Ex: class MyClass

interface name Should start with uppercase letter and be an adjective
e.g. Runnable, Remote, ActionListener etc.

method name Should start with lowercase letter and be a verb
e.g. actionPerformed(), main(), print(), println() etc.

variable name Should start with lowercase letter e.g. firstName, orderNumber etc.
package name Should be in lowercase letter e.g. package java.lang;

constants name Should be in uppercase letter. e.g. RED, YELLOW,
MAX_PRIORITY etc. e.g. final double TAX_RATE = .05

Camel Case in java naming conventions
Java follows camelcase syntax for naming the class, interface, method and variable. If name is
combined with two words, second word will start with uppercase letter always.

e.g. actionPerformed(), firstName, ActionEvent, ActionListener efc.

OPERATORS:

Operator is a Symbol. Java provides a rich set of operators as

The Arithmetic Operators:

Arithmetic operators are used in mathematical expressions in the same way that they are used in
algebra. The arithmetic operators are: + - * [/ %

The Relational Operators: It tells the relationship b/w two operands e.g., a>b, a<b,a==b,a<=b, a>=b
== (equal to),!= (not equal to),> (greater than),< (less than),>= (greater than or equal to),<=
(less than or equal to)

The Assignment Operators(=):Thisoperatoris usedto assignthevalueof a variable.E.g. a=4
Short hand assignment operator: += -= *= /= %= E.g.a+=4 (a=a+4)

Dept of CSE, NRCM 21 Dr.Venkateswarulu, Assoc Prof

JAVA PROGRAMMING(CS2205PC)

The Bitwise Operators:
Bitwise operator works on bits and performs bit-by-bit operation. Assume if a = 60; b = 13;
now in binary format they will be as follows: a=00111100

Binary Left Shift Operator: << (left shift) b=0000 1101
It is moved left by the number of bits specified by the right operand. =~ | 77"

] . S a&b = 0000 1100
Example: A << 2 will give 240 which is 1111 0000 alb = 0011 1101

Binary Right Shift Operator: >> (right shift) a”b =0011 0001
It is moved right by the number of bits specified by the right operand. ~a= 11000011
Example: A >> 2 will give 15 whichis 1111

Shift right zero fill operator : >>> (zero fill right shift)

It is moved right by the number of bits specified by the right operand and shifted values are
filled up with zeros.

Example: A >>>2 will give 15 which is 0000 1111

The Logical Operators:

Logical AND operator: && (logical and)
If both the operands are non-zero, then the condition becomes true.
Example (A && B) is false. (0 && 1) or (1 && 0) or (0 && 0) is false & (1 && 1) is true

Logical OR Operator: || (logical or)
If any of the two operands are non-zero, then the condition becomes true.
Example (A || B) is true. (0 || 1) or (1 || 0) or (1 || 1) is true & (0 || 0) is false

Logical NOT Operator: ! (logical not)

Use to reverses the logical state of its operand. If a condition is true then Logical NOT
operator will make false.
Example !(A && B) is true.

instanceof Operator: Type comparision operator
This operator is used only for object reference variables. The operator checks whether the object
is of a particular type (class type or interface type). instanceof operator is written as:

(Object reference variable) instanceof (class/interface type)
public class Test

{

public static void main(String args[])
{
String name = "James";
boolean result = name instanceof String;
System.out.println(result);
}

}
Op: James

Unary operators: + - ++ -- ! sizeof

Dept of CSE, NRCM 22 Dr.Venkateswarulu, Assoc Prof

JAVA PROGRAMMING(CS2205PC)

Conditional Operator (? :)

Conditional operator is also known as the ternary operator. This operator consists of three
operands and is used to evaluate Boolean expressions. The goal of the operator is to decide
which value should be assigned to the variable. The operator is written as:

variablex = (expression)? valueif true : valueif false
int x = (10>20)? 100 : 200

Operator Precedence:

O porator Precoedence

Oporators Proecodcmoe

P o=t fix e, e ——

Timar R e —————

rmualtiplicati we - e

acdditive — —

=kuniftt —_—— === =

relati raal - = = = imstancaeoal

Expressions:
An expression is a construct made up of variables, operators, and method invocations, which are
constructed according to the syntax of the language that evaluates to a single value.

int a =0;

arr[0] = 100;

System.out.println("Element 1 at index 0: " + arr[0]);

int result = 1 + 2; // result is now 3

Statements

Statements are roughly equivalent to sentences in natural languages. A statement forms a
complete unit of execution. The following types of expressions can be made into a statement by
terminating the expression with a semicolon (;). Ex: System.out.print(A+B);

Type Conversion and Casting:

We can assign a value of one type to a variable of another type. If the two types are compatible,
then Java will perform the conversion automatically. For example, it is always possible to assign
an int value to a long variable. However, not all types are compatible, and thus, not all type
conversions are implicitly allowed. For instance, there is no conversion defined from double to
byte.

But it is possible for conversion between incompatible types. To do so, you must use a cast,
which performs an explicit conversion between incompatible types.

Java,,s Automatic Conversions
When one type of data is assigned to another type of variable, an automatic type conversion will
take place if the following two conditions are satisfied:

* The two types are compatible.
» The destination type is larger than the source type.

Dept of CSE, NRCM 23 Dr.Venkateswarulu, Assoc Prof

JAVA PROGRAMMING(CS2205PC)

When these two conditions are met, a widening conversion (Small data type to Big data type)
takes place. For example, the int type is always large enough to hold all valid byte values, so no
explicit cast statement is required.

For widening conversions, the numeric types, including integer and floating-point types, are
compatible with each other. However, the numeric types are not compatible with char or
boolean. Also, char and boolean are not compatible with each other.

Java also performs an automatic type conversion when storing a literal integer constant into
variables of type byte, short, or long.

Casting Incompatible Types

The automatic type conversions are helpful, they will not fulfill all needs. For example, if we
want to assign an int value to a byte variable. This conversion will not be performed
automatically, because a byte is smaller than an int. This kind of conversion is sometimes
called a narrowing conversion, since you are explicitly making the value narrower so that it will
fit into the target type. To create a conversion between two incompatible types, you must use a
cast. A cast is simply an explicit type conversion.

It has this general form:

(target-type) value

Here, target-type specifies the desired type to convert the specified value to.
Example:

int a;

byte b;

b = (byte) a;

A different type of conversion will occur when a floating-point value is assigned to an integer
type: truncation. As integers do not have fractional components so, when a floating-point value
is assigned to an integer type, the fractional component is lost.

Example Program: Conversion.java

class Conversion {
public static void main(String args[]) {

byte b;

inti=257;

double d = 323.142; Output: .
System.out.println("\nConversion of int to byte."); F;Ill;irg 21?1 ?flm to.byte.

b = (byte) i; Conversion of double to int.
System.out.println("tand b" +1+" " + b); dandj323.142 323
System.out.printIn("\nConversion of double to int."); Conversion of double to byte,
i = (int) d: dand b 323.142 67

System.out.println("d and 1" +d + " " +1);
System.out.println("\nConversion of double to byte.");
b = (byte) d;

fystem.out.println("d andb"+d+""+Db);}

JAVA PROGRAMMING(CS2205PC)

The Type Promotion Rules
Java defines several type promotion rules that apply to expressions. They are as follows:

First, all byte, short, and char values are promoted to int, as just described. Then, if one operand
is a long, the whole expression is promoted to long. If one operand is a float, the entire
expression is promoted to float. If any of the operands is double, the result is double.

Ex:

class Promote { double d =.1234;

public static void main(String args[]) { double result = (f *b) + (i/c) - (d * s);

byte b = 42; System.out.println((f *b) + "+ "+ (i/c) +"
char c ='a'; ="+ (d *9));

short s = 1024; System.out.println("result = " + result);

int i = 50000; }

float f = 5.67f; }

Let*s look closely at the type promotions that occur in this line from the program:
double result=(f*b)+ (i/¢c) - (d * s);
In the first subexpression, f * b, b is promoted to a float and the result of the subexpression is

float. Next, in the subexpression i/c, ¢ is promoted to int, and the result is of type int. Then, in
d*s, the value of s is promoted to double, and the type of the sub expression is double.

Control Statements or Control Flow:

IF Statement
The IF statement is Java‘s conditional branch statement. It can be used to route program
execution through two different paths.

The general form of the if statement:
if (condition) statement];

Here, each statement may be a single statement or a compound statement enclosed in curly
braces (that is, a block). The condition is any expression that returns a Boolean value. If the
condition is true, then statement] is executed.

IF —-ELSE Statement
If the condition is true, then statement] is executed. Otherwise statement?2 is executed.

The general form of the if statement:
if (condition) statement];
else statement2;

The if-then-else statement provides a secondary path of execution when an "if" clause evaluates
to false.

void ifClause()

{

int a, b;

if(a <b)

a=0;

else

e

Nested ifs
A nested if is an if statement that is the target of another if or else. Here is an example:
if(i == 10)
{
if(j < 20)
a=Db;
if(k > 100)
c =d; // this if is
else
a=c; /l associated with this else

}

else a=d; // this else refers to if(i == 10)

The if-else-if Ladder
A common programming construct that is based upon a sequence of nested ifs is the if-else-if
ladder. It looks like this:

if(condition)
statement;

else if(condition)
statement;

else if(condition)
statement;

else

statement;

Example: // Demonstrate if-else-if statements.
class IfElse
{

public static void main(String args[])
{

int month = 4; // April
String season;
if(month == 12 || month == 1 || month == 2)
season = "Winter";
else if(month == 3 || month == 4 || month ==5)
season = "Spring";
else if(month == 6 || month == 7 || month == 8)
season = "Summer";
else if(month == 9 || month == 10 || month ==11)
season = "Autumn";
else
season = "Bogus Month";
System.out.println("April is in the " + season + ".");

}
}
Output:
April is in the Spring.

JAVA PROGRAMMING(CS2205PC)

The switch Statement

Unlike if-then and if-then-else, the switch statement allows for any number of possible execution
paths. A switch works with the byte, short, char, and int primitive data types. It also works with
enumerated types.

Program: displays the name of the month, based on the value of month, using the switch
statement.

class SwitchDemo
{
public static void main(String[] args) {
int month = §;
switch (month) {

case 1: System.out.println("January"); case 9: System.out.println("September");

break; break;
case 2: case 10: System.out.println("October");
System.out.println("February"); break;

break; case 11: System.out.println("November");
case 3: System.out.println("March"); break;

break; case 12: System.out.println("December");
case 4: System.out.println("April"); break;

break; default: System.out.println("Invalid
case 5: System.out.println("May"); month.");

break; break;
case 6: System.out.println("June"); }

break; }
case 7: System.out.println("July"); }

break; " "

case 8: System.out.println("August"); Output:"August

break;

Iteration Statements

Java‘s iteration statements are for, while, and do-while. These statements create what we
commonly call loops. As you probably know, a loop repeatedly executes the same set of
instructions until a termination condition is met.

The while Statement
The while statement continually executes a block of statements while a particular condition is
true. Its syntax can be expressed as:

while (expression)

{
Statements // body of loop

}

Note: The while statement evaluates an expression, which must return a Boolean value.

JAVA PROGRAMMING(CS2205PC)

Ex: class WhileDemo
{

public static void main(String[] args)

{
int count = 1;
while (count < 11)

{
System.out.println("Count is: " + count);
count++;
}
}
}
Output: Count is:1 Count is:2................. Count is:10

do-while statement
The do-while loop always executes its body at least once, because its conditional expression is at

the bottom of the loop. Its syntax can be expressed as:

do
{

statement(s)
} while (expression);

The difference between do-while and while is that do-while evaluates its expression at the
bottom of the loop instead of the top. Therefore, the statements within the do block are always
executed at least once and while terminates with semicolon.

Ex Program:
class DoWhileDemo

{

public static void main(String[] args){
int count = 1;

do {
System.out.println("Count is: " 4+ count);
count++;
} while (count < 11);
}
}
Output: Count is:1 Count is:2................. Count is:10
The for Statement

The for statement provides a compact way to iterate over a range of values. Programmers often
refer to it as the "for loop" because of the way in which it repeatedly loops until a particular
condition is satisfied.

The general form of the for statement can be expressed as follows:

for (initialization; termination; increment) {
statement(s)

}

JAVA PROGRAMMING(CS2205PC)

Ex: class ForTick {
public static void main(String args|[]) {
for(int n=10; n>0; n--)
System.out.println("tick " + n);
}
}

When using the for statement, we need to remember that

* The initialization expression initializes the loop; it's executed once, as the loop begins.

* When the termination expression evaluates to false, the loop terminates.

* The increment expression is invoked after each iteration through the loop; it is perfectly
acceptable for this expression to increment or decrement a value.

// Without using the comma. // Using the comma.

class Sample { class Comma {

public static void main(String args[]) { public static void main(String args[]) {
inta, b; int a, b;

b=4; for(a=1, b=4; a<b; a++, b--) {
for(a=1; a<b; a++) { System.out.println("a =" + a);
System.out.println("a =" + a); System.out.println("b =" + b);
System.out.println("b =" + b); }

b--; }

} }

3}

Output ;)iltput'

a =

b=4 b=4

a=2 a=2

b=3 b=3

For-Each Version of the for Loop
A for-each style loop is designed to cycle through a collection of objects, such as an array, in
strictly sequential fashion, from start to finish. A for-each loop by using the keyword foreach,

Java adds the for-each capability by enhancing the for statement. The advantage of this approach
is that no new keyword is required, and no pre existing code is broken. The for-each style of for
is also referred to as the enhanced for loop.

The general form of the for-each version of the for is shown here:

for(type itr-var : collection) statement-block

//Using for loop //Using for-each loop
intnums[]={1,2,3,4,5,6,7,8,9,10 }; intnums[]={1,2,3,4,5,6,7,8,9,10 };
int sum = 0; int sum = 0;

for(int i=0; 1 < 10; i++) sum += numsJ[i]; for(int X: nums) sum += X;

JAVA PROGRAMMING(CS2205PC)

/! Use a for-each style for on a 1D array.
class ForEach {

public static void main(String args[]) {
intnums[|={1,2,3,4,5,6,7,8,9,10 };
int sum = 0;

/l use for-each style for to display and sum
the values

for(int X : nums) {
System.out.println("Value is: " + x);

sum += X;

}

System.out.println("Summation: " + sum);
}

}
Output:
Value is:
Value is:
Value is:
Value is:
Value is:
Value is:
Value is:
Value is:
Value is:
Value is: 10
Summation: 55

O 0 1O\ N W=

Nested Loops
One loop may be inside another.

Ex: Nested.java
class Nested

{

public static void main(String args[])
{
int 1, j;
for(i=1; i<10; i++)
{
for(j=i; j<10; j++)
{
System.out.print(".");
}

System.out.println();

}

// Use for-each style for on a 2D array
class ForEach3 {

public static void main(String args[]) {
int sum = 0;

int nums|][] = new int[3][5];

// give nums some values

for(inti=0;1 < 3; i++)

for(int j=0; j < 5; j++)

nums[i][j] = G+1)*G+1);

// use for-each to display & sum the values
for(int X[] : nums) {

for(inty : x) {
System.out.println("Value is: " + y);
sum +=y;

}}

System.out.println("Summation: " + sum);

)}

Output:

Valueis: 1 Valueis:2 Valueis: 3
Valueis: 4 Valueis: 5

Valueis: 2 Valueis:4 Valueis: 6
Valueis: 8 Valueis: 10

Valueis: 3 Valueis: 6 Valueis: 9

Valueis: 12 Valueis: 15
Summation: 90

JAVA PROGRAMMING(CS2205PC)
31

Unconditional Control Statements
Java supports the following types of unconditional control statements.
1. break:
it is used to break any loop control statement or any switch control statement.
/I Using break to exit a loop.
class Breakl.oop {
public static void main(String args[]) {
for(int i=0; i<100; i++) {
if(i == 10) break; // terminate loop if i is 10
System.out.print(i+" "); }
System.out.print(" Loop complete.");

bl
Output: 0123456789 Loop complete.

2. continue

it is used to skip the current iteration.

// Using continue to skip the current iteration
class Breakl.oop {
public static void main(String args[]) {
for(int i=0; i<10; i++) {
if(i == 5) continue;
System.out.print(i+" ");
}

System.out.print(" Loop complete.");

bl
Output: 012346789 Loop complete.

3.goto:
The main drawback of goto statement in the ¢ language is it decrease the readability of a
program to avoid that drawback. The goto in java is changed as goto break.
The syntax for the goto statement in java is:
Label:
{
Statements;
Break Label;
}
Example:
/I Using break as a civilized form of goto.
class Break {
public static void main(String args[]) {
boolean t = true;
first:

{

second:

{
third:

{

System.out.println("Before the break.");
if(t) break second; // break out of second block
System.out.println("This won't execute");

}

System.out.println("This won't execute");
}
System.out.println("This is after second block.");
}
1)
Output:
Before the break.
This is after second block.

4. return:

The return control statement is used to jump the control from the called function to the calling
function.

Classes and Objects:

A class is a group of objects which have common properties. It is a template or blueprint from
which objects are created. It is a logical entity. It can't be physical. A class in Java can contain:
fields

methods

constructors

blocks

nested class and interface

o O O O O

Declaring Member Variables

There are several kinds of variables:

e Member variables in a class—these are called fields.

» Variables in a method or block of code—these are called local variables.
* Variables in method declarations—these are called parameters.

Syntax to declare a class:
class <class_name> {
field;
method;

}

A class is declared by use of the class keyword

class classname type methodname?2(parameter-list)
{ {

type instance-variablel; /I body of method

type instance-variable2; }

... ...

type instance-variableN; type methodnameN(parameter-list)

type methodname 1 (parameter-list) {

{